3.210 \(\int \cot (c+d x) \csc (c+d x) (a+a \sin (c+d x))^3 \, dx\)

Optimal. Leaf size=62 \[ \frac{a^3 \sin ^2(c+d x)}{2 d}+\frac{3 a^3 \sin (c+d x)}{d}-\frac{a^3 \csc (c+d x)}{d}+\frac{3 a^3 \log (\sin (c+d x))}{d} \]

[Out]

-((a^3*Csc[c + d*x])/d) + (3*a^3*Log[Sin[c + d*x]])/d + (3*a^3*Sin[c + d*x])/d + (a^3*Sin[c + d*x]^2)/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0618724, antiderivative size = 62, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {2833, 12, 43} \[ \frac{a^3 \sin ^2(c+d x)}{2 d}+\frac{3 a^3 \sin (c+d x)}{d}-\frac{a^3 \csc (c+d x)}{d}+\frac{3 a^3 \log (\sin (c+d x))}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*Csc[c + d*x]*(a + a*Sin[c + d*x])^3,x]

[Out]

-((a^3*Csc[c + d*x])/d) + (3*a^3*Log[Sin[c + d*x]])/d + (3*a^3*Sin[c + d*x])/d + (a^3*Sin[c + d*x]^2)/(2*d)

Rule 2833

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d*x)/b)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \cot (c+d x) \csc (c+d x) (a+a \sin (c+d x))^3 \, dx &=\frac{\operatorname{Subst}\left (\int \frac{a^2 (a+x)^3}{x^2} \, dx,x,a \sin (c+d x)\right )}{a d}\\ &=\frac{a \operatorname{Subst}\left (\int \frac{(a+x)^3}{x^2} \, dx,x,a \sin (c+d x)\right )}{d}\\ &=\frac{a \operatorname{Subst}\left (\int \left (3 a+\frac{a^3}{x^2}+\frac{3 a^2}{x}+x\right ) \, dx,x,a \sin (c+d x)\right )}{d}\\ &=-\frac{a^3 \csc (c+d x)}{d}+\frac{3 a^3 \log (\sin (c+d x))}{d}+\frac{3 a^3 \sin (c+d x)}{d}+\frac{a^3 \sin ^2(c+d x)}{2 d}\\ \end{align*}

Mathematica [A]  time = 0.0292881, size = 62, normalized size = 1. \[ \frac{a^3 \sin ^2(c+d x)}{2 d}+\frac{3 a^3 \sin (c+d x)}{d}-\frac{a^3 \csc (c+d x)}{d}+\frac{3 a^3 \log (\sin (c+d x))}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*Csc[c + d*x]*(a + a*Sin[c + d*x])^3,x]

[Out]

-((a^3*Csc[c + d*x])/d) + (3*a^3*Log[Sin[c + d*x]])/d + (3*a^3*Sin[c + d*x])/d + (a^3*Sin[c + d*x]^2)/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.036, size = 63, normalized size = 1. \begin{align*}{\frac{{a}^{3} \left ( \sin \left ( dx+c \right ) \right ) ^{2}}{2\,d}}+3\,{\frac{{a}^{3}\sin \left ( dx+c \right ) }{d}}-{\frac{{a}^{3}}{d\sin \left ( dx+c \right ) }}+3\,{\frac{{a}^{3}\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*csc(d*x+c)^2*(a+a*sin(d*x+c))^3,x)

[Out]

1/2*a^3*sin(d*x+c)^2/d+3*a^3*sin(d*x+c)/d-1/d*a^3/sin(d*x+c)+3*a^3*ln(sin(d*x+c))/d

________________________________________________________________________________________

Maxima [A]  time = 1.10877, size = 73, normalized size = 1.18 \begin{align*} \frac{a^{3} \sin \left (d x + c\right )^{2} + 6 \, a^{3} \log \left (\sin \left (d x + c\right )\right ) + 6 \, a^{3} \sin \left (d x + c\right ) - \frac{2 \, a^{3}}{\sin \left (d x + c\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)^2*(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

1/2*(a^3*sin(d*x + c)^2 + 6*a^3*log(sin(d*x + c)) + 6*a^3*sin(d*x + c) - 2*a^3/sin(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 1.75988, size = 193, normalized size = 3.11 \begin{align*} -\frac{12 \, a^{3} \cos \left (d x + c\right )^{2} - 12 \, a^{3} \log \left (\frac{1}{2} \, \sin \left (d x + c\right )\right ) \sin \left (d x + c\right ) - 8 \, a^{3} +{\left (2 \, a^{3} \cos \left (d x + c\right )^{2} - a^{3}\right )} \sin \left (d x + c\right )}{4 \, d \sin \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)^2*(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/4*(12*a^3*cos(d*x + c)^2 - 12*a^3*log(1/2*sin(d*x + c))*sin(d*x + c) - 8*a^3 + (2*a^3*cos(d*x + c)^2 - a^3)
*sin(d*x + c))/(d*sin(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)**2*(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.17326, size = 74, normalized size = 1.19 \begin{align*} \frac{a^{3} \sin \left (d x + c\right )^{2} + 6 \, a^{3} \log \left ({\left | \sin \left (d x + c\right ) \right |}\right ) + 6 \, a^{3} \sin \left (d x + c\right ) - \frac{2 \, a^{3}}{\sin \left (d x + c\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)^2*(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/2*(a^3*sin(d*x + c)^2 + 6*a^3*log(abs(sin(d*x + c))) + 6*a^3*sin(d*x + c) - 2*a^3/sin(d*x + c))/d